Package com.oracle.bmc.ailanguage.model
Class EntityMetrics.Builder
- java.lang.Object
-
- com.oracle.bmc.ailanguage.model.EntityMetrics.Builder
-
- Enclosing class:
- EntityMetrics
public static class EntityMetrics.Builder extends Object
-
-
Constructor Summary
Constructors Constructor Description Builder()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description EntityMetrics
build()
EntityMetrics.Builder
copy(EntityMetrics model)
EntityMetrics.Builder
f1(Float f1)
F1-score, is a measure of a model\u2019s accuracy on a datasetEntityMetrics.Builder
label(String label)
Entity labelEntityMetrics.Builder
precision(Float precision)
Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)EntityMetrics.Builder
recall(Float recall)
Measures the model’s ability to predict actual positive classes.
-
-
-
Method Detail
-
label
public EntityMetrics.Builder label(String label)
Entity label- Parameters:
label
- the value to set- Returns:
- this builder
-
f1
public EntityMetrics.Builder f1(Float f1)
F1-score, is a measure of a model\u2019s accuracy on a dataset- Parameters:
f1
- the value to set- Returns:
- this builder
-
precision
public EntityMetrics.Builder precision(Float precision)
Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)- Parameters:
precision
- the value to set- Returns:
- this builder
-
recall
public EntityMetrics.Builder recall(Float recall)
Measures the model’s ability to predict actual positive classes.It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Parameters:
recall
- the value to set- Returns:
- this builder
-
build
public EntityMetrics build()
-
copy
public EntityMetrics.Builder copy(EntityMetrics model)
-
-